Validating the Crop Identification Capability of the Spectral Variance at Key Stages (SVKS) Computed via an Object Self-Reference Combined Algorithm
نویسندگان
چکیده
Crop-distribution information constitutes the premise of precise management for crop cultivation. Euclidean distance and spectral angle mapper algorithms (ED SAM) mostly use similarity difference metric (SSDM) to determine variance associated with spatial location distribution acquisition. These methods are relatively insensitive shape or amplitude variation must reconstruct a reference curve representing entire class, possibly resulting in notable indeterminacy ultimate results. Few studies utilize these compute time define new index identification—namely, at key stages (SVKS)—even though this temporal characteristic could be helpful identification. To integrate advantages sensibility avoid reconstructing curve, an object self-reference combined algorithm comprising ED SAM (CES) was proposed SVKS. objectively validate crop-identification capability SVKS-CES (SVKS computed via CES), SVKS-ED ED), SVKS-SAM SAM), five (SI) types were selected comparison example maize The results indicated that ranges can characterize greater interclass separability attained better identification accuracy compared other indexes. In particular, SVKS-CES2 provided greatest best PA (92.73%), UA (100.00%), OA (98.30%) Compared performance SI, SVKS separability, but more non-maize fields incorrectly identified as usage. Owning accuracy-improvement SVKS-CES, omission commission errors obviously reduced utilization SI. findings suggest application is expected further spread
منابع مشابه
an investigation of the impact of self monitoring on langauge teachers motivational practice and its effect on learners motivation
the central purpose of this study was to conduct a case study about the role of self monitoring in teacher’s use of motivational strategies. furthermore it focused on how these strategies affected students’ motivational behavior. although many studies have been done to investigate teachers’ motivational strategies use (cheng & d?rnyei, 2007; d?rnyei & csizer, 1998; green, 2001, guilloteaux & d?...
Implementing the CROP Reference Architecture: The CROP Learning Object Editor
Concept, Resource, Order, Product (CROP) is a reference architecture for adaptive Learning Objects owned by Semantic Learning Services developed by the second author. According to CROP, composite Objects are essentially recursive, and adaptively is an emergent property of Learning Service communication and collaboration. CROP is formally represented as an OWL ontology consisting of the framewor...
متن کاملnew semigroup compactifications via the enveloping semigroups of associated flows
this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.
15 صفحه اولan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14246390